Giả sử D là số nguyên
\(\Rightarrow y=x^2+\sqrt{4x^2+\sqrt{36x^2+10x+3}}\) chính phương
Mà \(x\) tự nhiên \(\Rightarrow z=4x^2+\sqrt{36x^2+10x+3}\) chính phương
\(\Rightarrow36x^2+10x+3\) chính phương
Đặt \(36x^2+10x+3=k^2\Leftrightarrow\left(36x+5\right)^2+83=36k^2\)
\(\Leftrightarrow\left(6k-36x-5\right)\left(6k+36x+5\right)=83\)
Giải pt nghiệm nguyên trên ta được duy nhất 1 nghiệm tự nhiên \(x=1\)
Thế \(x=1\) vào \(z\) ta được \(z=4+7=11\) không phải số chính phương (mâu thuẫn giả thiết)
Vậy với mọi x tự nhiên thì D không phải số nguyên