\(\Leftrightarrow3n-12+17⋮n-4\)
\(\Leftrightarrow n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
3n +5 là bội của n-4
\(\Rightarrow\left(3n+5\right)⋮\left(n-4\right)\\ \Rightarrow\left(3n-12+17\right)⋮\left(n-4\right)\\ \Rightarrow\left[3\left(n-4\right)+17\right]⋮\left(n-4\right)\)
Vì \(3\left(n-4\right)⋮\left(n-4\right)\)
\(\Rightarrow17⋮\left(n-4\right)\\ \Rightarrow n-4\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng:
n-4 | -17 | -1 | 1 | 17 |
n | -13 | 3 | 5 | 21 |
vậy \(n\in\left\{-13;3;5;21\right\}\)