\(I=\int\dfrac{x+1}{\sqrt{x+1}}dx=\int2\left(\sqrt{x+1}\right)^2.\dfrac{dx}{2\sqrt{x+1}}=2\int\left(\sqrt{x+1}\right)^2.d\left(\sqrt{x+1}\right)\)
\(=\dfrac{2}{3}\sqrt{\left(x+1\right)^3}+C=\dfrac{2}{3}\left(x+1\right)\sqrt{x+1}+C\)
\(I=\int\dfrac{x+1}{\sqrt{x+1}}dx=\int2\left(\sqrt{x+1}\right)^2.\dfrac{dx}{2\sqrt{x+1}}=2\int\left(\sqrt{x+1}\right)^2.d\left(\sqrt{x+1}\right)\)
\(=\dfrac{2}{3}\sqrt{\left(x+1\right)^3}+C=\dfrac{2}{3}\left(x+1\right)\sqrt{x+1}+C\)
Tìm các nguyên hàm sau:
a) \(\int (3x^2-2x-4)dx \)
b) \(\int(\sin3x-\cos4x)dx \)
c) \(\int(e^{-3x}-4^x)dx \)
d) \(\int\ln(x)dx \)
e) \(\int(x.e^x)dx \)
f) \(\int(x+1).\sin(x)dx \)
g) \(\int x.\ln(x)dx \)
Tìm nguyên hàm của các hàm số sau:
a) \(\int\left(6x-\dfrac{1}{sin^2x}+1\right)dx\)
b) \(\int\dfrac{x^3+2x^2-1}{x^2}dx\)
Tính nguyên hàm \(I=\int{\sqrt{2x-x^2}}dx\)
Tìm nguyên hàm sau:
$\displaystyle\int
\left(3x^2 - \frac{4}{x} + \sin3x - \cos4x + e^{2x+1} + 3^{2x-2} + 3\sqrt{x^4} + \frac{1}{\cos^2x} - \frac{1}{\sin^2x}\right) dx$
Cho \(\int\left(x\right)dx=x\sqrt{x^2+1}\). Tìm I=\(\int x.f\left(x^2\right)dx\)
Tính các nguyên hàm sau :
a) \(\int x\left(3-x\right)^5dx\)
b) \(\int\left(2^x-3^x\right)^2dx\)
c) \(\int x\sqrt{2-5x}dx\)
d) \(\int\dfrac{\ln\left(\cos x\right)}{\cos^2x}dx\)
e) \(\int\dfrac{x}{\sin^2x}dx\)
\(\int\dfrac{x+1}{\left(x-2\right)\left(x+3\right)}dx\)
h) \(\int\dfrac{1}{1-\sqrt{x}}dx\)
i) \(\int\sin3x\cos2xdx\)
k) \(\int\dfrac{\sin^3x}{\cos^2x}dx\)
l) \(\int\dfrac{\sin x\cos x}{\sqrt{a^2\sin^2x+b^2\cos^2x}}dx\) (\(a^2\ne b^2\))
Áp dụng phương pháp tính nguyên hàm từng phần, hãy tính :
a) \(\int\left(1-2x\right)e^xdx\)
b) \(\int xe^{-x}dx\)
c) \(\int x\ln\left(1-x\right)dx\)
d) \(\int x\sin^2xdx\)
e) \(\int\ln\left(x+\sqrt{1+x^2}\right)dx\)
g) \(\int\sqrt{x}\ln^2xdx\)
h) \(\int x\ln\dfrac{1+x}{1-x}dx\)
tìm nguyên hàm \(\int\)x.(x2+4)4 dx
Tìm nguyên hàm \(I=\int\frac{x^2-3}{x^3-2x^2-x+2}dx\)
Tìm nguyên hàm các hàm số hữu tỉ sau :
a.) \(\int\frac{1}{x^2-3x+2}dx\)
b) \(\int\frac{1}{4x^2-3x-1}dx\)