Để Q(x) có nghiệm thì Q(x) = 0
Hay: \(2x^2-3x+1=0\)
\(\Rightarrow2x^2-2x-x+1=0\)
\(\Rightarrow2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
`2x^2-3x+1=0`
`<=>2x^2-x-2x+1=0`
`<=>x(2x-1)-(2x-1)=0`
`<=>(2x-1)(x-1)=0`
`<=>x=1\or\x=1/2`