Điều kiện \(x^2-1\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)
Đặt \(x-\sqrt{x^2-1}=a\) thì ta có pt trở thành:
\(\left(1+a\right)^{2005}+\left(1+\dfrac{1}{a}\right)^{2005}=2^{2006}\)
Ta có:
\(\left(1+a\right)^{2005}+\left(1+\dfrac{1}{a}\right)^{2005}\ge2^{2005}\left(\sqrt{a^{2005}}+\dfrac{1}{\sqrt{a^{2005}}}\right)\ge2^{2006}\)
Đấu = xảy ra khi a = 1 hay
\(x-\sqrt{x^2-1}=1\)
\(\Leftrightarrow x=1\)