\(M\left(x\right)=x^2+4x+8=x^2+2.x.2+4+4\)
\(=\left(x+2\right)^2+4\). Dễ thấy:
\(\left(x+2\right)^2\ge0\forall x\Rightarrow\left(x+2\right)^2+4>0\)
=> \(M\left(x\right)\) vô no
\(N\left(x\right)=5x^2+9x+4=0\)
\(\Leftrightarrow5x^2+5x+4x+4=0\)
\(\Leftrightarrow5x\left(x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow\left(5x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{4}{5}\\x=-1\end{matrix}\right.\)
Vậy................
M(x) = x2 + 4x +8
M(x) = 0 => x2 + 4x +8 = 0
=> x2+ 2x+2x +4 +4 = 0
=> (x2 + 2x) + (2x+4) +4 =0
=> x(x+2) + 2(x+2) +4 = 0
=> ( x+2) 2 +4 =0
=> (x+2)2 = -4
không có x thỏa mãn
=> M(x) không có nghiệm
Cho N(x) = 0
Ta có: 5x2 + 9x + 4 = 0
\(\Rightarrow\) 5x2 + 5x + 4x + 4 = 0
\(\Rightarrow\) (5x2 + 5x) + (4x + 4) = 0
\(\Rightarrow\) 5x(x + 1) + 4x(x + 1) = 0
\(\Rightarrow\) (x + 1).(5x + 4) = 0
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\5x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\5x=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy x = 1 hoặc x = \(\dfrac{4}{5}\) là nghiệm của đa thức N(x).
\(M\left(x\right)=x^2+4x+8\)
\(\Leftrightarrow M\left(x\right)=x^2+2.x.2+2^2+4\)
\(\Leftrightarrow M\left(x\right)=\left(x+2\right)^2+4\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\Rightarrow\left(x+2\right)^2+4\ge4\forall x\)
Vậy Đa thức \(M\left(x\right)\) có nghiệm \(\in\phi\)