\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=2-\frac{3}{2n-1}\)
Vậy để 4n-5 chia hết cho 2n-1 thì \(2n-1\inƯ\left(3\right)\)
Mà Ư(3)={-1;1;3;-3}
+)2n-1=1 <=> n=1
+)2n-1=-1 <=> n=0
+)2n-1=3 <=> n=2
+)2n-1=-3 <=> n=-1
Vậy n={-1;0;1;2}
\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=\frac{2\left(2n-1\right)}{2n-1}-\frac{3}{2n-1}=2-\frac{3}{2n-1}\in Z\)
\(\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)=\left\{1;3\right\}\left(n\in N\right)\)
\(\Rightarrow2n\in\left\{2;4\right\}\)
\(\Rightarrow n\in\left\{1;2\right\}\)
\(4n-5⋮2n-1\\ \Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\in\text{Ư}\left(3\right)=\left\{1;3;-1;-3\right\}\\ \Rightarrow2n\in\left\{2;4;0;-2\right\}\\ \Rightarrow n\in\left\{1;2;0;-1\right\}\)
Vì n thuộc N => n thuộc {1;2;0}