Bài 1:Cho x\(\ge0\).Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
1)A=3x+2\(\sqrt{x}\)+1min
2)A=x+3\(\sqrt{x}\)-3min
3)A=-2x-3\(\sqrt{x}\)+2max
4)A=-4x-5\(\sqrt{x}\)-3max
5)A=x-2\(\sqrt{x}\)+2min
6)A=x-4\(\sqrt{x}\)-5min
7)A=-x+6\(\sqrt{x}\)+5max
8)A=-x+8\(\sqrt{x}\)-10max
9)A=\(\dfrac{2}{\sqrt{x}+1}\)max
10)A=\(\dfrac{4}{\sqrt{x}+2}\)max
11)A=\(\dfrac{-3}{\sqrt{x}+3}\)min
12)A=\(\dfrac{-5}{\sqrt{x}+4}\)min
13)A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)max
14)A=\(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)max
15)A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)min
16)A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+4}\)min
17)A=\(\dfrac{x+3}{\sqrt{x}+1}\)min
18)A=\(\dfrac{x+5}{\sqrt{x}+2}\)min
19)A=\(\dfrac{x+12}{\sqrt{x}+2}\)min
20)A=\(\dfrac{x+7}{\sqrt{x}+3}\)min
21)A=\(\dfrac{x+9}{\sqrt{x}+4}\)min
22)A=\(\dfrac{x+24}{\sqrt{x}+5}\)min