\(T=\sqrt{\left(3-x\right)^2+\left(4-y\right)^2}+\sqrt{x^2+y^2}\)
\(T\ge\sqrt{\left(3-x+x\right)^2+\left(4-y+y\right)^2}=5\)
\(T_{min}=5\) khi \(4x=3y\)
\(T=\sqrt{\left(3-x\right)^2+\left(4-y\right)^2}+\sqrt{x^2+y^2}\)
\(T\ge\sqrt{\left(3-x+x\right)^2+\left(4-y+y\right)^2}=5\)
\(T_{min}=5\) khi \(4x=3y\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}x^2+\left(y-6\right)^2=y+13x+27\\\sqrt{9x^2+\left(2x-3\right)\left(x-y\right)}+4\sqrt{xy}=7y\end{matrix}\right.\)
1. Giải bpt: \(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
2. Với \(x\in\left(0;1\right)\) tìm Min \(P=\dfrac{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}{x}+\dfrac{5}{\sqrt{1-x}}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x\left(x-y\right)=6-x-2y\\\left(x-2\right)\sqrt{y^2+4}=y\sqrt{x^2+4y}+8\end{matrix}\right.\)
Tìm Min \(T=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
Cho x, y, z đôi một khác nhau thỏa mãn \(\left(x+z\right)\left(y+z\right)=1\). Tìm Min
\(M=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\)
Câu 1
1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\)
2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\)
Câu 2:
1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm có hoành độ không âm x1, x2. Tính theo m giá trị của biểu thức \(P=\sqrt{x_1}+\sqrt{x_2}\) và tìm giá trị nhỏ nhất của P.
2. Giải bất phương trình: \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)
Câu 3:
1. Cho hàm số \(y=f\left(x\right)=mx^2-2\left(m-1\right)x+m-2\). Tìm m để trên đồ thị của \(f\left(x\right)\)có 2 điểm \(A\left(x_A;y_A\right),B\left(x_B,y_B\right)\)thỏa mãn: \(2x_A-y_A-3=0,2x_B-y_B-3=0\) và \(AB=\sqrt{5}\)
2. Giải phương trình: \(x\sqrt{x}-1=\left(\sqrt{x}-1\right).\sqrt{2x^2-3x+2}\)
Câu 4:
1. Cho parabol (P): \(y=x^2-\left(m-1\right)x+\left(2m^2-8m+6\right)\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ \(x_1,x_2\). Tìm GTLN và GTNN của biểu thức \(P=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)
2. Giải bất phương trình: \(\left(2x-5-\sqrt{x^2-x-25}\right)\sqrt{x^2-5x+6}\le0\)
Câu 5:
1. Cho parabol (P): \(y=-x^2\) và đường thẳng d đi qua điểm I (0; -1). và có hệ số góc là k. Gọi A và B là các giao điểm của (P) và d. Giả sử A, B lần lượt có hoành độ là \(x_1,x_2\)
a. Tìm k để trung điểm của đoạn AB nằm trên trục tung.
b. Tìm GTNN của biểu thức: \(P=\left|x^3_1-x^3_2\right|\)
2. Giải phương trình: \(1+\left(6x+2\right)\sqrt{2x^2-1}=2\left(5x^2+4x\right)\)
a) Giải bất phương trình:
\(\sqrt{x^2+2x}+\sqrt{x^2+3x}\) ≥ \(2x\)
b) Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+6x^2y+9xy^2+y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{matrix}\right.\)
Tìm Min của m để \(\dfrac{4x-\sqrt{2x-1}-m}{\sqrt{x^2+\left(m-1\right)^2}-m+1}\le0\) có nghiệm.
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)