Biểu thức này không tồn tại cả min lẫn max
Nó chỉ tồn tại min khi có thêm điều kiện \(x>2\)
Biểu thức này không tồn tại cả min lẫn max
Nó chỉ tồn tại min khi có thêm điều kiện \(x>2\)
1. Giải bpt: \(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
2. Với \(x\in\left(0;1\right)\) tìm Min \(P=\dfrac{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}{x}+\dfrac{5}{\sqrt{1-x}}\)
Với \(x>0\), tìm min \(2x+\dfrac{27}{x^2}\)
Cho x, y, z đôi một khác nhau thỏa mãn \(\left(x+z\right)\left(y+z\right)=1\). Tìm Min
\(M=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\)
Cho 2 số thực dương \(x,y\) thỏa mãn \(x+y+xy=3\)
Tìm Min \(\dfrac{x\sqrt{x}}{\sqrt{x+3y}}+\dfrac{y\sqrt{y}}{\sqrt{y+3x}}\)
Tìm Min \(Q=\dfrac{4x-5}{\sqrt{x}-1}\) với x > 1
Tìm Min của m để \(\dfrac{4x-\sqrt{2x-1}-m}{\sqrt{x^2+\left(m-1\right)^2}-m+1}\le0\) có nghiệm.
Cho a, b, c là các số thực thỏa mãn a > 0, b > 0 và \(f\left(x\right)=ax^2+bx+c\ge0\). . Tìm Min \(Q=\dfrac{4a+c}{b}\)
Tìm Min của hàm số \(f\left(x\right)=3x+\dfrac{1}{2x}\) trên nửa khoảng \([1;+\infty)\)
Rút gọn :
a) \(\cos\dfrac{x}{5}\cos\dfrac{2x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}\)
b) \(\sin\dfrac{x}{7}+2\sin\dfrac{3x}{7}+\sin\dfrac{5x}{7}\)