Áp dụng bất đẳng thức AM - GM ta có:
\(f\left(x\right)=x+\left(2x+\dfrac{1}{2x}\right)\ge1+2\sqrt{2x.\dfrac{1}{2x}}=3\).
Dấu "=" xảy ra khi và chỉ khi x = 1.
Vậy...
Áp dụng bất đẳng thức AM - GM ta có:
\(f\left(x\right)=x+\left(2x+\dfrac{1}{2x}\right)\ge1+2\sqrt{2x.\dfrac{1}{2x}}=3\).
Dấu "=" xảy ra khi và chỉ khi x = 1.
Vậy...
Cho tam thức f(x) = \(2x^2-3x+1\) . Trong các khẳng định sau , khẳng định nào đúng ?
A,f(x) > 0 với \(\forall x\in\left(\dfrac{1}{2};1\right)\)
B,\(f\left(x\right)>0\) với \(\forall x\in\left(-\infty;1\right)\)
C, f(x) < 0 với \(\forall x\in\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
D,f(x) >0 với \(\forall x\in\left(-\infty;\dfrac{1}{2}\right)\cup\left(1;+\infty\right)\)
Tính tổng các giá trị của m trên đoạn \(\left[\dfrac{-\pi}{3};\dfrac{\pi}{2}\right]\)để hàm số \(y=cos2x+cosx+\left|2m-1\right|\) có Min = 2
Cho nhị thức bậc nhất f(x) = 4-2x. Trong các khẳng định sau , khẳng định nào đúng ?
\(A,f\left(x\right)>0với\forall x\in\left(-\infty;2\right)\)
\(B,f\left(x\right)>0với\forall x\in(-\infty;-2]\)
C,\(f\left(x\right)>0với\forall x\in\left(2;+\infty\right)\)
\(D,f\left(x\right)< 0với\forall x\in\left(-\infty;2\right)\)
Tính giá trị nhỏ nhất của hàm số \(y=3x+\dfrac{4}{x^2}\)trên khoảng \(\left(0;+\infty\right)\).
1. Giải bpt: \(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
2. Với \(x\in\left(0;1\right)\) tìm Min \(P=\dfrac{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}{x}+\dfrac{5}{\sqrt{1-x}}\)
Tìm Min của m để \(\dfrac{4x-\sqrt{2x-1}-m}{\sqrt{x^2+\left(m-1\right)^2}-m+1}\le0\) có nghiệm.
a) Giả sử phương trình bậc 2: \(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\) có 2 nghiệm \(x_1,x_2\)thỏa mãn \(x_1+x_2\le4\). Tìm Max, Min của \(P=x^3_1+x^3_2+x_1x_2\left(3x_1+3x_2+8\right)\)
b) Cho hàm \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left|x-2\right|}\). Tìm tất cả các giá trị của \(m\) để \(f\left(x\right)< 0,\forall x\in\left[0;1\right]\)
Cho x, y, z đôi một khác nhau thỏa mãn \(\left(x+z\right)\left(y+z\right)=1\). Tìm Min
\(M=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\)
Cho biểu thức \(f\left(x\right)=\left(-x+1\right)\left(x-2\right)\).Khẳng định nào sau đây đúng và giải thích
A. \(f\left(x\right)< 0,\forall x\in\left(1;+\infty\right)\)
B. \(f\left(x\right)< 0,\forall x\in\left(-\infty;2\right)\)
C. \(f\left(x\right)>0,\forall x\in R\)
D. \(f\left(x\right)>0,\forall x\in\left(1;2\right)\)