Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ễnnguy Hùng

Tìm min (max) của mỗi biểu thức sau :

a) A= x2+4x+7

b) B= x2- x+1

c) C= x2+x+1

d) D= x2+2\(\sqrt{x}\)+4

e) x+\(\sqrt{x}\)+1

g) G= x - \(\sqrt{x}\)+1

giúp mk vs ạ mk cần gấp <3

Mysterious Person
3 tháng 9 2018 lúc 14:54

mk sữa lại nha , do đánh máy nhanh --> nhầm :((

a) ta có : \(A=x^2+4x+7=\left(x+2\right)^2+3\ge3\)

\(\Rightarrow A_{min}=3\) khi \(x=-2\)

b) ta có : \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow B_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

c) ta có : \(C=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow C_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)

d) điều kiện xác định : \(x\ge0\)

ta có : \(D=x^2+2\sqrt{x}+4\ge4\)

\(\Rightarrow D_{min}=4\) khi \(x=0\)

e) điều kiện xác định : \(x\ge0\)

ta có : \(E=x+\sqrt{x}+1\ge1\)

\(\Rightarrow E_{min}=1\) khi \(x=0\)

g) ta có : \(G=x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow G_{min}=\dfrac{3}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

Mysterious Person
3 tháng 9 2018 lúc 14:44

a) ta có : \(A=x^2+4x+7=\left(x+2\right)^2+3\ge3\)

\(\Rightarrow A_{max}=3\) khi \(x=-2\)

b) ta có : \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow B_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

c) ta có : \(C=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow C_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)

d) điều kiện xác định : \(x\ge0\)

ta có : \(D=x^2+2\sqrt{x}+4\ge4\)

\(\Rightarrow D_{max}=4\) khi \(x=0\)

e) điều kiện xác định : \(x\ge0\)

ta có : \(E=x+\sqrt{x}+1\ge1\)

\(\Rightarrow E_{max}=1\) khi \(x=0\)

g) ta có : \(G=x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow G_{max}=\dfrac{3}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)


Các câu hỏi tương tự
Lê Duy Phước
Xem chi tiết
dodo
Xem chi tiết
Phương Lê
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Võ tuyết duy
Xem chi tiết
Lê Ánh ethuachenyu
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Đức Lâm
Xem chi tiết