Ta có: \(P+\frac{1}{2}(a+b)=(\frac{3}{2}x+\frac{6}{x})+(\frac{3}{2}y+\frac{24}{y})\geq 2.3+2.6=18\)
Mà \(a+b\leq 6\) suy ra \(P\geq 15\)
dấu = xảy ra \(<=> x+y=6 , \frac{3}{2}x=\frac{6}{x}\) và \(\frac{3}{2}y=\frac{24}{y}\)
\(<=> x=2 , y=4\)
Đặt A = ( \(\dfrac{3x}{2}\) + \(\dfrac{6}{x}\) ) + ( \(\dfrac{3y}{2}\) + \(\dfrac{24}{y}\) ) - ( \(\dfrac{x+y}{2}\) )
Áp dụng BĐT Cô-si ta có
\(\dfrac{3x}{2}+\dfrac{6}{x}\ge6\)
\(\dfrac{3y}{2}+\dfrac{24}{y}\ge6\)
Có x + y \(\le6\)
=> - (x + y) \(\ge6\) => \(\dfrac{-\left(x+y\right)}{2}\ge3\)
=> A \(\ge15\)
Dấu " = " xảy ra <=> x = 2; y = 4