\(y=-x^3+3mx^2-6\left(m^2-2\right)x\left(x>2\right)\)
\(y'=-3x^2+6mx-6\left(m^2-2\right)\)
Hàm số nghịch biến
\(\Leftrightarrow\left\{{}\begin{matrix}-3< 0\\\Delta'\le0\end{matrix}\right.\)\(\Leftrightarrow m^2\ge4\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
\(m\in(-\infty;-2]\cup[2;+\infty)\)