cho phương trình x2 - (m+1)x +m2 -2m +2 =0 , tìm m để phương trình có 2 nghiệm x1 , x2 sao cho biểu thức P = x12 +x22 đạt giá trị lớn nhất
Tìm m để: 2x2 + (m - 6)x - m2 - 3m = 0 có 2 nghiệm phân biệt x1, x2 thoả mãn: 1<x1<x2
Cho phương trình x2 - (2m+1)x + m2 +1 = 0 , với m là tham số . Tìm tất cả các giá trị m ∈ Z để phương trình có hai nghiệm phân biệt x1 , x2 sao cho biểu thức \(P=\dfrac{x_1x_2}{x_1+x_2}\)
có giá trị là số nguyên
Tìm m để: 2x2 + (m - 6)x - m2 - 3m = 0 có 2 nghiệm phân biệt x1, x2 thoả mãn: 1
cho phương trình : x2 - (m+1) +m - 2 =0 (1)
tìm m để :
a) phương trình (1) có 2 nghiệm x1,x2 là độ dài 2 cạnh góc vuông có cạnh huyền bằng 10
b) phương trình (1) có 2 nghiệm x1, x2 sao cho biểu thức P= | x1 -x2 | đạt giá trị nhỏ nhất
Cho phương trình \(x^2-2mx+4m-6=0\) Tìm giá trị của tham số m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn :
a) 0<x1<2<x2
b) 0<x1<x2<2
Cho phương trình : \(x^2+\left(3m+2\right)x+3m=0\).
Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) sao cho biểu thức \(Q=\left(x_1+1\right)^4+\left(x_2+1\right)^4\) đạt giá trị nhỏ nhất .
Tìm m để: x2 - 2x - m2 - 2m = 0 có 2 nghiệm phân biệt x1, x2 thoả mãn: x1<2<x2
tìm m để phương trình \(x^{2+}2\left(m-1\right)x+3m-2=0\) có 2 nghiệm trái dấu x1, x2 thỏa mãn \(\dfrac{1}{x_1}-3=\left|\dfrac{1}{x_2}\right|\)