Δ=(2m+2)^2-4(m^2+2)
=4m^2+8m+4-4m^2-8=8m-4
Để phương trình có 2 n0 phân biệt thì 8m-4>0
=>m>1/2
x1^2+3x2^2=4x1x2
=>x1^2-4x1x2+3x2^2=0
=>(x1-x2)(x1-3x2)=0
=>x1=x2 hoặc x1=3x2
TH1: x1=x2
x1+x2=2m+2
=>x1=x2=m+1
x1x2=m^2+2
=>m^2+2=m^2+2m+1
=>2m=1
=>m=1/2(loại)
TH2: x1=3x2
x1+x2=2m+2
=>4x2=2m+2 và x1=3x2
=>x2=1/2m+1/2 và x1=3/2m+3/2
x1x2=m^2+2
=>3/4(m^2+2m+1)=m^2+2
=>m^2+2=3/4m^2+3/2m+3/4
=>1/4m^2-3/2m+5/4=0
=>m=5(nhận) hoặc m=1(nhận)