\(0\le x\le\frac{7\pi}{12}\Rightarrow0\le2x\le\frac{7\pi}{6}\)
\(\Rightarrow-\frac{1}{2}\le sin2x\le1\)
\(\Rightarrow-\frac{1}{2}\le7m+3\le1\)
\(\Rightarrow-\frac{1}{2}\le m\le-\frac{2}{7}\)
\(0\le x\le\frac{7\pi}{12}\Rightarrow0\le2x\le\frac{7\pi}{6}\)
\(\Rightarrow-\frac{1}{2}\le sin2x\le1\)
\(\Rightarrow-\frac{1}{2}\le7m+3\le1\)
\(\Rightarrow-\frac{1}{2}\le m\le-\frac{2}{7}\)
Tìm m để phương trình sau có nghiệm:
\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt{3}.sin2x-cos2x\)
Cho phương trình \(3\sin^2x+2\left(m+1\right)sinx.cosx+m-2=0\)Số giá trị nguyên của m để trên khoảng\(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\)phương trình có hai nghiệm \(x_1,x_2\) với\(x_1\in\left(-\frac{\pi}{2};0\right),x_2\in\left(0;\frac{\pi}{2}\right)\)là
Xác định m để phương trình \(6cos^2x+\left(9m-7\right).cosx-6m+2=0\) có đúng 3 nghiệm phân biệt \(x\in\left(0;\dfrac{3\pi}{2}\right)\)
cho pt \(\sqrt{3}sin2x-2cos^2x-m=0\) tìm m thỏa mãn pt có nghiệm x\(\in\left[\frac{\Pi}{4};\frac{5\Pi}{12}\right]\)
Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\)
Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).
Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).
Câu 4: Giá trị của m để phương trình \(cos2x-\left(2m+1\right)sinx-m-1=0\) có nghiệm trên khoảng \(\left(0;\pi\right)\) là \(m\in[a;b)\) thì a+b là?
Câu 5: Điều kiện cần và đủ để phương trình \(msinx-3cosx=5\) có nghiệm là \(m\in(-\infty;a]\cup[b;+\infty)\) với \(a,b\in Z\). Tính a+b.
Câu 6: Điều kiện để phương trình \(msinx-3cosx=5\) có nghiệm là?
Câu 7: Số nghiệm để phương trình \(sin2x+\sqrt{3}cos2x=\sqrt{3}\) trên khoảng \(\left(0;\dfrac{\pi}{2}\right)\) là?
Câu 8: Tập giá trị của hàm số \(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) là?
Câu 9: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) dể phương trình \(\left(m+1\right)sin^2-sin2x+cos2x=0\) có nghiệm?
Câu 10: Có bao nhiêu giá trị nguyên của tham số m để phương trình \(sin2x-cos2x+|sinx+cosx|-\sqrt{2cos^2x+m}-m=0\) có nghiệm thực?
tìm nghiệm của các phương trình sau trong khoảng đã cho : a) \(\sin2x=-\frac{1}{2}\) với \(0\le x\le\pi\) ; b) \(\cos\left(x-5\right)=\frac{\sqrt{3}}{2}\) với \(-\pi\le x\le\pi\)
Tìm m để phương trình sau có nghiệm trên \(\left(0;\dfrac{\pi}{2}\right)\) :
mx2 + 4\(\pi\)2 = 4\(\pi\)2. cosx
Tìm m để phương trình sau có 5 nghiệm phân biệt thuộc khoảng \(\left(-\dfrac{\pi}{2};3\pi\right)\)
2sin2x - (5m + 1)sinx + 2m2 + 2m = 0
2cos2x-sin2x-sin2x=m+1 tìm m để phương trình có nghiệm \(\dfrac{\pi}{2}\)+kπ