Tìm m để phương trình có nghiệm :
\(\left(\sqrt{x-1}-m\right).\left(\sqrt{x}+m\right)+m^2=2\sqrt[4]{x\left(x-1\right)}+1\)
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
Tìm các giá trị của tham số m để phương trình sau có nghiệm thực: \(m\left(x+4\right)\sqrt{x^2+2}=5x^2+8x+24\)
Tìm m để phương trình \(\left(x^2-4x\right)^2-3\left(x-2\right)^2+m=0\) có 4 nghiệm phân biệt
Tìm m để phương trình \(x^2-2x+2\left(x-\sqrt{2x+m}\right)\left(\sqrt{x}+1\right)-m=0\) có nghiệm duy nhất trên đoạn [0;3].
(chỉ cần gợi ý cách biến đổi ra pt bậc 2 là đc)
Có bao nhiêu tham số nguyên m để phương trình: \(\left(\sqrt{x+2}-\sqrt{10-x}\right)\left(x^2-10x-11\right)\left(\sqrt{3x+3-m}\right)=0\)
có đúng 2 nghiệm phân biệt
Cho phương trình \(x^2-2\left(m+1\right)x+m^2+2=0\), với m là tham số . Tìm m để phương trình có hai nghiệm x1 , x2 sao cho \(\left|x^4_1-x_2^4\right|\)= 16m2 +64m
Tìm m để hệ phương trình có nghiệm :
\(\begin{cases}x-y+m=0\left(1\right)\\y+\sqrt{xy}=2\left(2\right)\end{cases}\)
1. Tìm m để hệ có đúng 3 nghiệm \(\left\{{}\begin{matrix}xy\left(x-2\right)\left(y-6\right)=m\\x^2+y^2-2\left(x+3y\right)=3m\end{matrix}\right.\)
2. Tìm m để phương trình có duy nhất nghiệm thỏa mãn \(x\le3\):
\(x^2-\left(m+3\right)x+2m-1=0\)