Bài 3. Cho hệ phương trình: \(\left\{{}\begin{matrix}x-my=1\\x+y=m^2\end{matrix}\right.\) với m là tham số.
a) Giải hệ phương trình với m = 3.
b) Tìm m để hệ phương trình trên có nghiệm duy nhất.
c) Tìm m để hệ phuwong trình trên vô số nghiệm.
\(\left\{{}\begin{matrix}2x+y=3m-1\\x-2y=-m-3\end{matrix}\right.\)
Tìm m để hệ có nghiệm (x;y) thỏa mãn y=\(x^2\)
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{matrix}\right.\)
Tìm các giá trị của m để hệ phương trình có nghiệm thoả mãn điều kiện: \(S=x+y\) đạt giá trị lớn nhất
Câu 1: Giải phương trình và hệ phương trình
a) \(\sqrt{4x^2-4x+9}=3\)
b) \(\left\{{}\begin{matrix}3x-y=5\\2y-x=0\end{matrix}\right.\)
Câu 2:
a) Cho hai đường thẳng (d\(_1\)): y = 2x - 5 và (d\(_2\)): y = 4x - m (m là tham số). Tìm tất cả các giá trị của tham số m để (d\(_1\)) và (d\(_2\)) cắt nhau tại một điểm trên trục hoành Ox
b) Rút gọn biểu thức: \(P=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\) với x > 0, x \(\ne\) 9, x \(\ne\) 25
Tìm điều kiện của m để hệ phương trình sau : \(\left\{{}\begin{matrix}mx-y=1\\m^3x+\left(m^2-1\right)y=2\end{matrix}\right.\) vô nghiệm,vô số nghiệm
Giải giúp mình vài hệ pt này nha
thanks nhiều
1.\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=15\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}\left(1-\dfrac{12}{y+3x}\right)\sqrt{x}=2\\\left(1+\dfrac{12}{y+3x}\right)\sqrt{y}=6\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}x^3+y^3=8\\x+y+2xy=2\end{matrix}\right.\)
4.\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
5.\(\left\{{}\begin{matrix}x^3-3x=y^3-3y\\x^6+y^6=1\end{matrix}\right.\)
6.\(\left\{{}\begin{matrix}x^2-2xy+3y^2=9\\2x^2-13xy+15y^2=0\end{matrix}\right.\)
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
Cho hệ phương trình: \(\left\{{}\begin{matrix}x^3y^2-2x^2y-x^2y^2+2xy+3x-3=0\\y^2+x^{2017}=y+3m\end{matrix}\right.\). Tìm các giá trị của \(m\) để hệ phương trình có hai nghiệm phân biệt \(\left(x_1;y_1\right)\) và \(\left(x_2;y_2\right)\) thoả mãn điều kiện \(\left(x_1+y_2\right)\left(x_2+y_1\right)+3=0\).
Câu 1: a) Cho biết \(a=2+\sqrt{3}\) và \(b=2-\sqrt{3}\). Tính giá trị biểu thức P = a + b - ab
b) Giải hệ phương trình: \(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\)
Câu 2: Cho biểu thức: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-x}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\) (với x>0, x\(\ne\)1)
a) Rút gọn biểu thức P
b) Tìm các giá trị của x để P >\(\dfrac{1}{2}\)