\(y'=3x^2-6\left(2m+1\right)x+12m+5\ge0\) ;\(\forall x>2\)
\(\Leftrightarrow3x^2-6x+5\ge12m\left(x-1\right)\) ;\(\forall x>2\)
\(\Leftrightarrow\frac{3x^2-6x+5}{12\left(x-1\right)}\ge m\) ;\(\forall x>2\)
Đặt \(g\left(x\right)=\frac{3x^2-6x+5}{12\left(x-1\right)}\Rightarrow m\le\min\limits_{x>2}g\left(x\right)\)
\(g'\left(x\right)=\frac{3x^2-6x+1}{12\left(x-1\right)^2}>0\) ;\(\forall x>2\) \(\Rightarrow g\left(x\right)>g\left(2\right)\) ;\(\forall x>2\)
\(\Rightarrow m\le g\left(2\right)=\frac{5}{12}\)