Ta có : \(y"=6mx+6\)
Hàm số đạt cực đại tại điểm \(x=2\Leftrightarrow\begin{cases}y'\left(2\right)=0\\y"\left(2\right)< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}12m+24=0\\12m+6< 0\end{cases}\)\(\Leftrightarrow m=-2\)
\(y'=3mx^2+6x+12\)
Để hàm số đạt cực đại tại điểm x = 2 thì \(y'\left(2\right)=0\Leftrightarrow m=-2\)
Với \(m=-2\) ta có \(y'=3\left(-2x^2+2x+4\right)\)
Ta thấy hàm số đạt cực đại tại điểm \(x=2\)