\(y'=3x^2-6\left(m+1\right)x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2m+2\end{matrix}\right.\)
\(y\left(0\right)=-m^3-1\)
TH1 \(2m+2>0\Leftrightarrow m>-1\)
\(\Leftrightarrow y\left(0\right)=-m^3-1< 0\Rightarrow y\left(2m+2\right)< 0\)
TH1 loại
TH2: \(2m+2< 0\Leftrightarrow m< -1\)
\(\Leftrightarrow y\left(0\right)=-m^3-1>0\Rightarrow y\left(2m+2\right)>0\)
\(\Leftrightarrow m^3< -1\Leftrightarrow m< -1\)
Vậy m<-1 thì phương trình có giá trị CĐ,CT>0