Với giá trị nào của m thì hàm số sau có giới hạn x dần đến 1. Tìm giới hạn đó
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^3-1}{x-1}\Leftrightarrow x< 1\\mx+2\Leftrightarrow x\ge1\end{matrix}\right.\)
Với giá trị nào của m thì hàm số sau có giới hạn x dần đến 1. Tìm giới hạn đó
\(f\left(x\right)=\left\{{}\begin{matrix}x^2-x+3\Leftrightarrow x\le1\\\dfrac{x+m}{x}\Leftrightarrow x>1\end{matrix}\right.\)
Cho hàm số :
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{1}{x-1}-\dfrac{3}{x^3-1},\left(x>1\right)\\mx+2,\left(x\le1\right)\end{matrix}\right.\)
Với giá trị nào của tham số m thì hàm số \(f\left(x\right)\) có giới hạn \(x\rightarrow1\). Tìm giới hạn này ?
2, Cho \(f\left(x\right)=\left\{{}\begin{matrix}\sqrt{x^2-4x}khix\ge4\\x+akhix< 4\end{matrix}\right.\)
Tìm a để hàm số tồn tại giới hạn tại x=4
Xét tính liên tục của hàm số sau tại các điểm đã chỉ ra:
a, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^2+2x-1}{x^2-1}\\2\end{matrix}\right.\)(x\(\ne\) \(\sqrt{2}\)) (x=\(\sqrt{2}\))
b, \(f\left(x\right)\left\{{}\begin{matrix}\frac{x-5}{\sqrt{2x-1}-3}\\\left(x-5\right)^2+3\end{matrix}\right.\)khi x>5 tại x=5
khi x\(\le\)5
1, \(f\left(x\right)\left\{{}\begin{matrix}\frac{x^2-2}{x-\sqrt{2}}\left(x\ne\sqrt{2}\right)\\2\sqrt{2}\left(x=\sqrt{2}\right)\end{matrix}\right.\)
2, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{x-5}{\sqrt{2x-1}-3}\left(x>5\right)\\\left(x-5\right)^2+3\left(x\le5\right)\end{matrix}\right.\) tại x=5
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}x^2,\left(x\ge0\right)\\x^2-1,\left(x< 0\right)\end{matrix}\right.\)
a) Vẽ đồ thị của hàm số \(f\left(x\right)\). Từ đó dự đoán về giới hạn của \(f\left(x\right)\) khi \(x\rightarrow0\)
b) Dùng định nghĩa chứng minh dự đoán trên
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{1}{x-1}-\dfrac{3}{x^3-1}\Leftrightarrow x>1\\mx+2\Leftrightarrow x\le1\end{matrix}\right.\)
tính lim f(x):
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2+1}{1-x}\left(x< 1\right)\\\sqrt{2x-2}\left(x\ge1\right)\end{matrix}\right.\)