ta có:
(d1) : 2mx-(m+1)y=m-2
=> y=\(\frac{2mx-m+2}{m+1}\)
(d2) : 2x+y=-1=> y=-1-2x
(d3): 3x-2y=2=> y=\(\frac{3x-2}{2}\)
xét phương trình hoành độ giao điểm của (d2) và (d3) ta có:
-1-2x=\(\frac{3x-2}{2}\)
\(\Leftrightarrow-2-4x=3x-2\)
\(x=0\) thay vào (d2) ta có: y=-1
=> điểm (0;-1) là giao điểm của (d2) và (d3)
để 3 đường thẳng (d1) ; (d2); (d3 ) đồng quy thì:
(0;-1) \(\in\left(d1\right)\)
=> -1=\(\frac{2-m}{m+1}\)
=> -m-1=2-m
=> -1=2(vô lý)
vậy không có giá trị của m để 3 đường thẳng đồng quy