Bài 1: Giới hạn của dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Mạnh Vũ

Tìm \(\lim\left(\sqrt[3]{1+2n-n^3}-n\right)\).

Nguyễn Lê Phước Thịnh
5 tháng 12 2023 lúc 21:28

\(\lim\limits\left(\sqrt[3]{1+2n-n^3}-n\right)\)

\(=\lim\limits\dfrac{1+2n-n^3-n^3}{\sqrt[3]{\left(1+2n-n^3\right)^2}+n\cdot\sqrt[3]{1+2n-n^3}+n^2}\)

\(=\lim\limits\dfrac{1+2n-2n^3}{\sqrt[3]{\left(1+2n-n^3\right)^2}+n\cdot\sqrt[3]{1+2n-n^3}+n^2}\)

\(=\lim\limits\dfrac{n^3\left(-2+\dfrac{2}{n^2}+\dfrac{1}{n^3}\right)}{n^2\cdot\sqrt[3]{\left(\dfrac{1}{n^3}+\dfrac{2}{n^2}-1\right)^2}+n^2\cdot\sqrt[3]{-1+\dfrac{2}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits\dfrac{n\left(-2+\dfrac{2}{n^2}+\dfrac{1}{n^3}\right)}{\sqrt[3]{\left(\dfrac{1}{n^3}+\dfrac{2}{n^2}-1\right)^2}+\sqrt[3]{-1+\dfrac{2}{n^2}+\dfrac{1}{n^3}}+1}\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits n=+\infty\\\lim\limits\dfrac{-2+\dfrac{2}{n^2}+\dfrac{1}{n^3}}{\sqrt[3]{\left(\dfrac{1}{n^3}+\dfrac{2}{n^2}-1\right)^2}+\sqrt[3]{-1+\dfrac{2}{n^2}+\dfrac{1}{n^3}}+1}=\dfrac{-2}{1+1+1}=-\dfrac{2}{3}< 0\end{matrix}\right.\)

Nguyễn Mạnh Vũ
5 tháng 12 2023 lúc 22:16

Phương pháp: Nhân cả tử và mẫu với biểu thức liên hợp

1. \(A\pm B\) có liên hợp là \(A\mp B\).

2. \(\sqrt{A}\pm B\) có liên hợp là \(\sqrt{A}\mp B\).

3. \(\sqrt{A}\pm\sqrt{B}\) có liên hợp là \(\sqrt{A}\mp\sqrt{B}\).

4. \(\sqrt[3]{A}\pm B\) có liên hợp là \(\sqrt[3]{A^2}\mp B\sqrt[3]{A}+B^2\).

Bài giải: Áp dụng biểu thức liên hợp số 4

    \(\lim\left(\sqrt[3]{1+2n-n^3}-n\right)\)

\(=\lim\dfrac{\left(\sqrt[3]{1+2n-n^3}-n\right)\left[\sqrt[3]{\left(1+2n-n^3\right)^2}+n\sqrt[3]{1+2n-n^3}+n^2\right]}{\sqrt[3]{\left(1+2n-n^3\right)^2}+n\sqrt[3]{1+2n-n^3}+n^2}\)

\(=\lim\dfrac{1+2n-n^3-n^3}{\sqrt[3]{n^6-4n^4-2n^3+4n^2+4n+1}+\sqrt[3]{n^3+2n^4-n^6}+n^2}\)

\(=\lim\dfrac{\left(1+2n-2n^3\right)\div n^3}{\left(\sqrt[3]{n^6-4n^4-2n^3+4n^2+4n+1}+\sqrt[3]{n^3+2n^4-n^6}+n^2\right)\div n^3}\)

\(=\lim\dfrac{\dfrac{1}{n^3}+\dfrac{2}{n^2}-2}{\sqrt[3]{\dfrac{1}{n^3}-\dfrac{4}{n^5}-\dfrac{2}{n^6}+\dfrac{4}{n^7}+\dfrac{4}{n^8}+\dfrac{1}{n^9}}+\sqrt[3]{\dfrac{1}{n^6}+\dfrac{2}{n^5}-\dfrac{1}{n^3}}+\dfrac{1}{n}}\)

\(=-\infty\)

(vì \(\lim\left(\dfrac{1}{n^3}+\dfrac{2}{n^2}-2\right)=-2\) và \(\lim\left(\sqrt[3]{\dfrac{1}{n^3}-\dfrac{4}{n^5}-\dfrac{2}{n^6}+\dfrac{4}{n^7}+\dfrac{4}{n^8}+\dfrac{1}{n^9}}+\sqrt[3]{\dfrac{1}{n^6}+\dfrac{2}{n^5}-\dfrac{1}{n^3}}+\dfrac{1}{n}\right)=0\), chia được \(\dfrac{-2}{0}\) nên ra \(-\infty\))


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Đỗ Thị Thanh Huyền
Xem chi tiết
James James
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Julian Edward
Xem chi tiết