có
\(A=3\cdot11...111\cdot9\cdot11...111\)(100 số 1)
\(A=27\cdot\left(11...111\right)^2\)(100 số 1)
\(A=27\left(10^{99}+...+10^0\right)^2\)
\(A=27\left(\dfrac{10^{99+1}-1}{10-1}\right)^2\)
\(A=\dfrac{10^{200}-2\cdot10^{100}+1}{3}\)
\(A=3\cdot3...3\cdot9\cdot9....9=3^{100}\cdot9^{100}=3^{100}\cdot3^{2^{100}}=3^{100}\cdot3^{200}=3^{300}\)