Theo đề, ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=4\\9a+3b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-16a\\9a+3b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2-4ac+16a=0\\9a+3b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a-c=-4\\9a+3b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+4\\9a-6a+a+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+4\\a=-1\end{matrix}\right.\Leftrightarrow\left(a,b,c\right)=\left(-1;2;3\right)\)