Lời giải:
Để hàm số có GTLN thì $a< 0$
Hàm số đạt giá trị lớn nhất tại \(x=\frac{-b}{2a}=1\Leftrightarrow -b=2a(1)\)
Hàm số đạt giá trị cực đại (giá trị lớn nhất) là \(f(1)=a+b+c=a^2+4(2)\)
ĐT hàm số đi qua điểm $(3,1)\Rightarrow 1=9a+3b+c(3)$
Từ \((1);(2);(3)\Rightarrow \left\{\begin{matrix} b=-2a\\ a+b+c=a^2+4\\ 9a+3b+c=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b=-2a\\ a+(-2a)+c=a^2+4\\ 9a+3(-2a)+c=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=-2a\\ c=a^2+a+4\\ c=1-3a\end{matrix}\right.\)
\( \Rightarrow \left\{\begin{matrix} a=-1\\ b=2\\ c=4\end{matrix}\right.\) hoặc \( \left\{\begin{matrix} a=-3\\ b=6\\ c=10\end{matrix}\right.\)