1. Tìm GTNN m của hàm số f(x)= \(\dfrac{4}{x}\) + \(\dfrac{x}{1-x}\) với 1>x>0
2. Tìm GTNN m của hàm số f(x)= \(\dfrac{1}{x}\) + \(\dfrac{1}{1-x}\) với 0<x<1
Giúp mk với nhé thanks trước.
Cho x, y là các số thực dương thỏa mãn x+y= 2019. Tìm GTNN của biểu thức P= \(\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}\)
Giúp mk vs nhé!
Tìm GTNN của Q=x2+\(\dfrac{8}{x}\) , x>0
Tìm GTNN của hàm số:
a) \(f\left(x\right)=x^2+\dfrac{16}{x^2}\)
b) \(g\left(x\right)=\dfrac{1}{x}+\dfrac{2}{1-x}\)(0<x<1)
1)Tìm GTNN của biểu thức
a)A=\(x^4+3x^2+2\)
B=(\(x^4+x^5\))
C=\(\left(x-1\right)^2+\left(y+2\right)^2\)
2)Tìm GTLN của biểu thức
A=5-3\(\left(2x-1\right)^2\)
B=\(\dfrac{1}{2\left(x-1\right)^2+3}\)
C=\(\dfrac{x^2+8}{x^2+2}\)
3)Tìm các giá trị nguyên của x để các biểu thức sau có GTLN
A=\(\dfrac{1}{7-x}\)
B=\(\dfrac{7-x}{12-x}\)
4)Tím số tự nhiên n để phân số \(\dfrac{7n-8}{2n-3}\) có GTLN
5)Tìm các giá trị nguyên của x để biểu thức sau có GTNN
A=\(\dfrac{1}{7-x}\)
B=\(\dfrac{7-x}{x-5}\)
C=\(\dfrac{5x-19}{x-4}\)
Help me mai 29/7 18h mik đi học rùi
giải giúp mấy bài sau nha mn
thanks nhiều
1. Tìm nghiệm nguyên của pt:
a) \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
b) \(12x^2+6xy+3y^2=28\left(x+y\right)\)
2. Cho x,y,z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\)
C/m: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}=< 1\)
3. Cho a,b,c>0 và abc=1
C/m: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}>=\dfrac{3}{2}\)
4. Cho x,y>0 và x + y >= 2
Tìm GTNN của biểu thức \(A=4\left(x+y\right)+\dfrac{1}{x+1}+\dfrac{1}{y+1}+1\)
Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.
Chứng minh rằng:
\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\)
Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:
1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)
2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\) ≥ \(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)
Bài 3: Cho a, b,c ,d > 0. CMR:
\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\) ≥ \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)
Bài 4: tìm giá trị nhỏ nhất của biểu thức:
A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1
B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0
Bài 5: Với x > 0, chứng minh rằng:
( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3
Giúp mk với, mai mk phải kiểm tra rồi!!
Tìm GTNN của hàm số \(f\left(x\right)=\dfrac{4}{x}+\dfrac{9}{1-x}\) với \(0< x< 1\)
m.n ơi giúp mk giải 2 câu này vs mk cần rất gấp....
câu 1/ a/ Nếu \(x\ge7\) thì biểu thức P = \(\dfrac{3}{x}\) + 2 có giá trị lớn nhất là bao nhiêu?
b/ Nếu 0 < x ≤ 9 thì biểu thức P = \(\dfrac{5}{x}\) \(-1\) có giá trị nhỏ nhất là bao nhiêu?
câu 2/a/ Giá trị lớn nhất của hàm số y = | x+1 | trên đoạn [ -2; 0 ] là bao nhiêu?
b/Giá trị lớn nhất của hàm số f(x) = \(x^3\left(2-x\right)^5\) trên đoạn [0;2] là bao nhiêu?
c/ Cho x ∈ [0;3], y ∈ [0;4]. Giá trị lớn nhất của biểu thức F= \(\left(3-x\right)\left(4-y\right)\left(2x+\dfrac{3y}{2}\right)\) bằng bao nhiêu?