giải pt: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
làm thế này mà chả hiểu sao lại bị gạch, ai biết chỉ với, cảm ơn nak:
+ ĐK:\(\left\{{}\begin{matrix}x\ge1\\x+3-4\sqrt{x-1}\ge0\\x+8-6\sqrt{x-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)
+ pt đã cho \(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\) (*)
Th1: \(\left\{{}\begin{matrix}\sqrt{x-1}-2< 0\\\sqrt{x-1}-3< 0\end{matrix}\right.\)
(*) \(\Leftrightarrow2-\sqrt{x-1}+3-\sqrt{x-1}=1\Leftrightarrow2\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(N\right)\)
Th2: \(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\ge0\end{matrix}\right.\)
(*) \(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=1\Leftrightarrow2\sqrt{x-1}=6\Leftrightarrow\sqrt{x-1}=3\Leftrightarrow x=10\left(N\right)\)
Th3: \(\sqrt{x-1}-3< 0\le\sqrt{x-1}-2\)
(*) \(\Leftrightarrow\sqrt{x-1}-2+3-\sqrt{x-1}=1\Leftrightarrow1=1\left(đúng\right)\)
Kl: \(x\ge1\)
1.giải hệ phương trình:
\(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)
2.Rút gọn biểu thức
\(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\) với x\(\ge\)0;x\(\ne\)4
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}4x^2-4xy-14x-3y^2+y+10=0\\5\sqrt{xy}+2x+2y=6\sqrt{y}-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^4+3x^2y+4x^2-2y^2+3y+2=0\\\sqrt{x\left(y-1\right)}+2y+2\sqrt{y-1}=3x+2\sqrt{x}+2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^6+3x^2-y^3-6y^2-15y-14=0\\\sqrt{xy+2x-y-2}+6x-2y=10\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
1. \(\left\{{}\begin{matrix}x+xy+y=11\\x^2+y^2-xy-2\left(x+y\right)=-31\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}xy-x+y=-3\\x^2+y^2-x+y+xy=6\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}x^2+4y^2=8\\x+2y=4\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2+6y=\frac{x}{y}-\sqrt{x-2y}\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\end{matrix}\right.\)
Câu 1: \(\sqrt{12-6x}\) có nghĩa khi \(12-6x\ge0\Leftrightarrow6\times\left(2-x\right)\ge0\Leftrightarrow2-x\ge0\Leftrightarrow-x\ge-2\Rightarrow x\le2\)
Câu 2: Kết quả phép khai căn \(\sqrt{\left(4-\sqrt{11}\right)^2}=\left|4-\sqrt{11}\right|=4-\sqrt{11}\)
C3: ko nghe dc
C4: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}=\)
C5: Đường thẳng \(y=ax+2\) và \(y=3x+5\) song song với nhau khi a=3
C6: Cho hệ phương trình \(\left\{{}\begin{matrix}2x-y=5\\x+y=4\end{matrix}\right.\) có nghiệm là
giải hệ:
a) \(\left\{{}\begin{matrix}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}2x^2+xy=y^2-3y+2\\x^2-y^2=3\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-zy=3\\x^2+y^2-2xy-xz+zy=-1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x^2-y^2+5x-y+6=0\\x^2+\left(x-y\right)^2=2+\sqrt{6x+7}+2\sqrt{x+y+1}\end{matrix}\right.\)
Giải pt: { máy tính cho ra x=-1 , x=4 }
\(\left(x+1\right)\sqrt{16x+17}=8x^2-15x-23\) (1)
ĐK: \(16x+17\ge0\Leftrightarrow x\ge-\dfrac{17}{16}\)
(1) \(\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(N\right)\\\left\{{}\begin{matrix}16x+17=\left(x-\dfrac{23}{8}\right)^2\\x\ge\dfrac{23}{8}\end{matrix}\right.\end{matrix}\right.\)(2)
(2) \(\Leftrightarrow16x+17=x^2-\dfrac{23}{4}x+\dfrac{529}{64}\Leftrightarrow x^2-\dfrac{87}{4}-\dfrac{559}{64}=0\) (Xấu quéc!! Pt này không có nghiệm = 4---> sai ở đâu vậy ạ??)
Cảm ơn trước nak ^^!
Tìm GTNN của biểu thức:
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\)
Biết\(\left\{{}\begin{matrix}x.y.z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)
1.Giải hệ phương trình:
\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=11\end{matrix}\right.\)
2.Rút gọn biểu thức:
B=\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{1}{\sqrt{x}+2}\)với x>0;x\(\ne\)9