Biểu thức này không tồn tại GTNN, chỉ tồn tại GTLN
Biểu thức này không tồn tại GTNN, chỉ tồn tại GTLN
Cho biểu thức:
\(P=\frac{3\sqrt{x}+2}{\sqrt{x}+1}-\frac{2\sqrt{x}-3}{3-\sqrt{x}}-\frac{3\left(3\sqrt{x}-5\right)}{x-2\sqrt{x}-3}\)
a) Rút gọn P
b) Tìm GTNN của P
\(A=\left(\frac{3\sqrt{x}}{\sqrt{x}+2}-\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{8\sqrt{x}}{4-x}\right):\left(2-\frac{2\sqrt{x}+3}{\sqrt{x}+2}\right)\)
a) RG A
b) Tìm GTNN của A với x > 4
P = \(\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}+1}{x+2\sqrt{x}+1}\right)\)
c) Tìm x để A = \(\frac{1}{P}\) đạt GTNN
Cho A=\(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\) với x≥0, x≠1.
Rút gọn A và tìm GTNN của A
Tìm GTNN của \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
Cho a,b,c>0 chứng minh \(\frac{a}{b}+\sqrt{\frac{b}{c}}+\sqrt[3]{\frac{c}{a}}\ge\frac{5}{2}\)
Cho bt: \(A=\frac{3\sqrt{x}-2}{\sqrt{x}+1}-\frac{14\sqrt{x}+4}{x+4\sqrt{x+3}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) với \(x\ge0\)
a. Rút gọn A
b. Tìm GTNn của A
Cho biểu thức: \(B=\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\) với \(x\ge0;x\ne4;9\)
a, Rút gọn biểu thức B
b, Tìm x để B < 0
c, Tìm GTNN của B
Cho bt:
\(A=\frac{3\sqrt{x}-2}{\sqrt{x}+1}-\frac{14\sqrt{x}+4}{x+4\sqrt{x+3}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) với \(x\ge0\)
a. Rút gọn bt A
b. Tìm GTNn của A
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
Cho
\(A=\left(\frac{\sqrt{x}-3}{\sqrt{x}}-\frac{6}{3-\sqrt{x}}-\frac{5}{x-3\sqrt{x}}\right):\left(1-\frac{\sqrt{x}-7}{\sqrt{x}-3}\right)\left(x>0,x\ne9\right)\)
a)Rút gọn A
b)So sánh A và \(\frac{1}{A}\)
c)Tìm GTNN của A