\(A=\dfrac{x^2+y^2}{x^2+2xy+y^2}\)
\(2A=\dfrac{2x^2+2y^2}{\left(x+y\right)^2}\)
\(2A=\dfrac{x^2+2xy+y^2+x^2-2xy+y^2}{\left(x+y\right)^2}\)
\(2A=1+\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}\)
Do : \(\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}\) ≥ 0 ∀xy
⇒ \(2A=1+\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}\) ≥ 1
⇔ \(A\) ≥ \(\dfrac{1}{2}\)
⇒ AMin = \(\dfrac{1}{2}\) ⇔ x = y