tìm GTNN của các bt
a, A=2x2+y2-2xy-2x+3
b,B=x2-2xy+2y2+2x-10y+17
c,C=x2-xy+y2-2y-2x
d,D=x2+xy+y2-3y-3x
e,E=2x2+2xy +5y2-8x-22y
Tìm GTNN
A= x2+ 2y2- 2xy+ 4x - 6y +2025
B= 2x2 +y2 -2xy-4x +2y +2021
C= 2x2+ 4y2+4xy- 8x - 12y +2020
D= x2 +y2-2x +4y+10
Tìm GTNN của \(2x^2+2y^2-2xy-6y+21\)
tìm GTNN của A=2x^2 + 5y^2 -2xy +2x +2y
1. Tìm GTNN:
A = x2 + x + 2
B = 4x2 - 4x - 1
C = x2 + y2 + 2x - 4y +2
D = x2 + y2 + 2xy - 2x - 2y + 1023
2. Tìm GTLN:
A = 2x - x2
B = 1 - x2 - 4x
Cho ba số x, y z thoả mãn 2xy+2x-5z=0. Tìm GTNN của A= x^2+2y^2+2xy+8/5y+z+2
\(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2=1+\frac{2}{x}+\frac{1}{x^2}+1+\frac{2}{y}+\frac{1}{y^2}\)
\(=2+\frac{2x+1}{x^2}+\frac{2y+1}{y^2}\)\(=2+\frac{2xy^2+y^2+2x^2y+x^2}{x^2y^2}\)\(=2+\frac{2xy\left(x+y\right)+\left(x+y\right)^2-2xy}{x^2y^2}\)
thay x+y=1 vào biểu thức, ta có:
\(2+\frac{2xy+1-2xy}{x^2y^2}=2+\frac{1}{x^2y^2}=2+\left(\frac{1}{xy}\right)^2\)
vì \(\left(\frac{1}{xy}\right)^2\ge0\) nên GTNN của biểu thức là 2
cái này mình giải dùm một bạn của mình, mọi người đi qua đừng chú ý nhé
tìm GTNN: \(2x^2+2xy+3y^2-8x-2y+1\)
Tìm GTNN:
a, P= (2x-1)2-(x+2)2
b, D= 2x2+2xy +2y2-6x-6y+5