a, A=2x2+y2-2xy-2x+3
= (x2-2xy+y2)+(2x2-2x+2)+1
=(x-y)2+2(x-1)2+1
vì (x-y)2 ≥0 ∀x,y
(x-1)2 ≥ 0 ∀x
=> (x-y)2+2(x-1)2+1 ≥1 ∀x,y
=> A ≥1
= > GTNN A = 1 khi
x-1=0
=> x=1
x-y=0
=> 1-y=0
=> y=1
vậy GTNN A =1 khi x=y=1
a, A=2x2+y2-2xy-2x+3
= (x2-2xy+y2)+(2x2-2x+2)+1
=(x-y)2+2(x-1)2+1
vì (x-y)2 ≥0 ∀x,y
(x-1)2 ≥ 0 ∀x
=> (x-y)2+2(x-1)2+1 ≥1 ∀x,y
=> A ≥1
= > GTNN A = 1 khi
x-1=0
=> x=1
x-y=0
=> 1-y=0
=> y=1
vậy GTNN A =1 khi x=y=1
Tìm giá trị nhỏ nhất của biểu thức A, B, C, D và giá trị lớn nhất của biểu thức E, F:
A = x2 - 4x + 1
B = 4x2 + 4x + 11
C = (x -1)(x + 3)(x + 2)(x + 6)
D = 2x2 + y2 – 2xy + 2x – 4y + 9
E = 5 - 8x - x2
F = 4x - x2 +1
Bài 1: Tìm GTNN của biểu thức sau:
a) A= 2x2 + x
b) B = x2 + 2x + y2- 4y + 6
c) C = 4x2 + 4x + 9y2 - 6y - 5
d) D = (2 + x)( x + 4) - ( x - 1)( x + 3 )2
Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
Tìm GTNN của biểu thức :
A= x2-3x+1 B= x2+2y2-2xy+2x-10y+17
C= \(\dfrac{-3}{x^2-x+2}\) D= \(\dfrac{2x^2-16x+41}{x^2-8x+22}\) E= \(\dfrac{4x^2-6x+3}{\left(2x-1\right)^2}\)
Bài 1: a. Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
b. Cho x,y là các số thực khác thỏa mãn: x2-2xy+2y2-2y-2x+5=0
Tính P = xy+x+y+15/4xy
Bài 2: Cho a,b nguyên dương với a+1 và b+2007 đều chia hết cho 6. CMR: 4a+a+b chia hết cho 6
Bài 3: Cho a,b >0 thỏa mãn a+b=1
Tính GTNN của P =1/ab+40(a4+b4)(bài này dùng bất dẳng thức cô-si và bunhiacopxki)
9 Tìm giá trị nhỏ nhất của biểu thức: a) A=2x^2+2xy+y^2-2x+2y+2
b) B=x^4-8xy-x^3y+x^2y^2-xy^3+y^4+200
c) C=x^2+xy+y^2-3x-3y
Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
12 Phân tích các đa thức sau thành nhân tử:
a) \(4x^3-8x^2+4xy^3\) ; b) \(x^2+2xy+y^2-36\) ; c) \(x^2-2xy+y^2-25\) ; d) \(x^2-5x+2xy-5y+y^2\)
e) \(49+2xy-x^2-y^2\) ; f) \(3x^2-6x+3-3y^2\) ; g) \(2x^3+4x^2+2x\) ; h) \(3x^2-6x+3-3y^2\)
i) \(x^3-2x^2y+xy^2-64x\) ; k) \(3x+3y-x^2-2xy-y^2\)
Thank bạn @Phùng Khánh Linh nhé
cho x,y là 2 số thực ≠0 thỏa mãn 2x2+ y2/4 +1/x2=4
A=2018+xy