P không có giá trị max hay min, miền giá trị của P chạy từ âm vô cùng tới dương vô cùng.
Khi x càng gần số 1 về bên phải (kiểu 1.00000000001 gì đó) thì giá trị P càng lớn
Khi xi càng gần số 1 về bên trái (kiểu 0.9999999999) thì giá trị P càng nhỏ
P không có giá trị max hay min, miền giá trị của P chạy từ âm vô cùng tới dương vô cùng.
Khi x càng gần số 1 về bên phải (kiểu 1.00000000001 gì đó) thì giá trị P càng lớn
Khi xi càng gần số 1 về bên trái (kiểu 0.9999999999) thì giá trị P càng nhỏ
Cho x, y, z dương thỏa mãn xyz = 1. Tìm GTLN:
P = \(\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}+\dfrac{1}{\left(3y+1\right)\left(z+x\right)+y}+\dfrac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
Tìm giá trị của x sao cho P>0
P=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
1. Tính P khi x=\(7+2\sqrt{3}\)
2. Tìm x để P<1
Cho \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a, Rút gọn P
b, Tìm GTNN của P
Cho biểu thức: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\). Tìm tất cả các giá trị của x để biểu thức A nhận giá trị là 1 số nguyên
Cho \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\); \(B=\dfrac{\sqrt{x}+1}{x-1}\) với x>0; \(x\ne1\).
a) Tính P=A:B
b) Tìm giá trị của m dể tồn tại x sao cho \(P\sqrt{x}=m+\sqrt{x}\)
bài 1: cho biểu thức
M = \(\left(1-\dfrac{4\sqrt{x}}{x-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-2\sqrt{x}}{x-1}\)
a, rút gọn M
b, tìm giá trị của x để M = \(\dfrac{1}{2}\)
bài 2: thực hiện phép tính
a,\(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
b, \(\dfrac{2}{3\sqrt{2}-4}-\dfrac{2}{3\sqrt{2}+4}\)
c,\(\dfrac{3}{2\sqrt{3}-3\sqrt{3}}-\dfrac{3}{2\sqrt{3}+3\sqrt{3}}\)
Cho: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\)
\(B=\dfrac{\sqrt{x}+1}{x-1}\) với x>0, \(x\ne1\)
a) Tính: P=A:B
b) Tìm giá trị của m để tồn tại x sao cho \(P\sqrt{x}=m+\sqrt{x}\)
1) Cho biểu thức:
P=\(\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2.\left(x-2\sqrt{x}+1\right)}{x-1}\)
a) Rút gọn P
b) Tìm x nguyên để P có giá trị nguyên