Hàm số xác định \(\forall x\in R\)
Gọi yo là 1 giá trị của hàm số. Ta có:
\(y_o=\dfrac{x^2-x+1}{x^2+x+1}\)
\(\Rightarrow\left(y_o-1\right)x^2+\left(y_o+1\right)x+\left(y_o-1\right)=0\left(1\right)\)
a. Nếu yo=1:
\(\left(1\right)\Rightarrow2x=0\Leftrightarrow x=0\)
b.Nếu yo\(\ne1\)
Ta có: \(\Delta=\left(y_o+1\right)^2-4\left(y_o-1\right)^2\ge0\)
\(\Leftrightarrow-3y_o^2+10y_o-3\ge0\)
\(\Leftrightarrow\left(-3y_o+1\right)\left(y_o-3\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{3}\le y_o\le3\)
Vậy MinA=1/3 khi x=1
MaxA=3 khi x=-1