\(ĐK:x\le1\)
Áp dụng BĐT Bunhiacopski:
\(C^2=\left(\sqrt{1-x}+\sqrt{1+x}\right)^2\le\left(1-x+1+x\right)\left(1^2+1^2\right)=2.2=4\)
\(\Rightarrow C^2\le4\) \(\Rightarrow C\le2\)
\(\Rightarrow Max_C=2\Leftrightarrow x=0\)
Ta có BĐT: \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\ge a+b\)
\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)
\(\Leftrightarrow2\sqrt{ab}\ge0\left(\forall a,b\ge0\right)\) luôn đúng
Áp dụng BĐT trên, ta được:
\(C=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)
\(\Rightarrow Min_C=\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)