\(A=\frac{1}{5x-3\sqrt{x}+8}=\frac{1}{5\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}}\le\frac{1}{\frac{151}{20}}=\frac{20}{151}\)
\(\Rightarrow A_{max}=\frac{20}{151}\) khi \(\sqrt{x}=\frac{3}{10}\Rightarrow x=\frac{9}{100}\)
\(A=\frac{1}{5x-3\sqrt{x}+8}=\frac{1}{5\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}}\le\frac{1}{\frac{151}{20}}=\frac{20}{151}\)
\(\Rightarrow A_{max}=\frac{20}{151}\) khi \(\sqrt{x}=\frac{3}{10}\Rightarrow x=\frac{9}{100}\)
Tìm GTLN của A = \(\frac{1}{5x-3\sqrt{x}+8}\)
\(A=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\frac{4\sqrt{x}}{3}\)
a. Rút gọn A
b. Tìm x để A=\(\frac{8}{3}\)
c. Tìm GTNN hoặc GTLN
\(A=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\frac{4\sqrt{x}}{3}\)
a. Rút gọn A
b. Tìm x để A = \(\frac{8}{3}\)
c. Tìm GTNN or GTLN
Tìm GTLN của:
\(A=\dfrac{-3\sqrt{x}}{\sqrt{x}+1}\)
Tìm GTLN của A = \(\frac{\sqrt{x}-2}{x\sqrt{x}-8}\)
Cho A = \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) với \(x\ge0,x\ne1\)
a, Rút gọn A
b, Tìm GTLN của A
Cho \(A=\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\) với x \(\ge\) 0. Rút gọn A. Tìm GTNN và GTLN của A
tìm GTLN của P=\(\frac{\sqrt{x}-1}{x+8}\)
1. Cho A = \(\frac{x-3}{\sqrt{x-1}+\sqrt{2}}\). Tìm GTNN của A
2. Cho B = \(\frac{6-x-\sqrt{x}}{\sqrt{x}+3}\). Tìm GTLN của B
3. Cho C = \(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}^{ }}\right)\)tất cả bình phương . \(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\). Tìm a để C >0, Tìm a để C = -2
HELP MEEEEE