Xét giới hạn \(L=\lim\limits_{x\rightarrow2}\frac{x^2-5x+6}{x^3-x^2-x-2}\)
\(=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(x-3\right)}{\left(x-2\right)\left(x^2+x+1\right)}=\lim\limits_{x\rightarrow2}\frac{x-3}{x^2+x+1}=-\frac{1}{7}\)
Xét giới hạn \(L=\lim\limits_{x\rightarrow2}\frac{x^2-5x+6}{x^3-x^2-x-2}\)
\(=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(x-3\right)}{\left(x-2\right)\left(x^2+x+1\right)}=\lim\limits_{x\rightarrow2}\frac{x-3}{x^2+x+1}=-\frac{1}{7}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}=\dfrac{1}{2}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}=\dfrac{1}{3}\)
tìm giới hạn
\(\lim\limits_{x\rightarrow2}\frac{x-2}{\sqrt{5x-1}+\sqrt{x+2}-5}\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}=\dfrac{1}{2}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}=\dfrac{1}{3}\)
Tìm giới hạn sau :
\(\lim\limits_{x\rightarrow2}\frac{x-\sqrt{3x-2}}{x^2-4}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x^2+5}-3}{x+2}\)
b, \(\lim\limits_{x\rightarrow2}\dfrac{x^2+x-6}{x^2-4}\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow2}\dfrac{x^2-3x+2}{x-2}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow2}\dfrac{1-\sqrt{x^2+3}}{-x^2+3x-2}\)
b, \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{4x-1}+3}{x^2-4}\)
tính giới hạn
\(\lim\limits_{x\rightarrow2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt[3]{2x+12}+x}{x^2+2x}\)
b, \(\lim\limits_{x\rightarrow2}\dfrac{x-\sqrt{x+2}}{x^3-8}\)