a: \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x^2+5}-3}{x+2}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{x^2+5-9}{\sqrt{x^2+5}+3}\cdot\dfrac{1}{x+2}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{x^2-4}{\left(x+2\right)\left(\sqrt{x^2+5}+3\right)}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(\sqrt{x^2+5}+3\right)}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{x-2}{\sqrt{x^2+5}+3}\)
\(=\dfrac{-2-2}{\sqrt{\left(-2\right)^2+5}+3}=\dfrac{-4}{3+3}=-\dfrac{4}{6}=-\dfrac{2}{3}\)
b: \(\lim\limits_{x\rightarrow2}\dfrac{x^2+x-6}{x^2-4}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x^2+3x-2x-6}{\left(x-2\right)\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x+3}{x+2}=\dfrac{2+3}{2+2}=\dfrac{5}{4}\)