\(\lim\limits_{x\to-\infty}\frac{x^4+2x^3+x-1}{x^2+3x-1}=\lim\limits_{x\to-\infty}\frac{x^2\left(x^2+3x-1\right)-x\left(x^2+3x-1\right)+4x^2-1}{x^2+3x-1}\)
\(\lim\limits_{x\to-\infty}\left(x^2-x+\frac{4x^2-1}{x^2+3x-1}\right)=\lim\limits_{x\to-\infty}\left(x^2-x+\frac{4-\frac{1}{x^2}}{1+\frac{3}{x}-\frac{1}{x^2}}\right)=\lim\limits_{x\to-\infty}\left(x^2-x\right)+4=+\infty\)