A=x (x+1) (x+2) (x+3)
=x(x+3)(x+1)(x+2)
=(x2+3x)+(x2+3x+2)
=(x2+3x)2+2(x2+3x)
=(x2+3x)2+2(x2+3x)+1-1
=(x2+3x+1)2-1\(\ge\)-1
Dấu "=" xảy ra khi x2+3x+1=0
<=>\(x=\frac{-3+\sqrt{5}}{2}\) hoặc \(x=\frac{-3-\sqrt{5}}{2}\)
Vậy GTNN của A là -1 tại x=\(\frac{-3+\sqrt{5}}{2}\) hoặc \(x=\frac{-3-\sqrt{5}}{2}\)
B=x2- 4x + y2 - 8y + 6
=x2-4x+4+y2-8y+16-14
=(x-2)2+(y-4)2-14\(\ge\)-14
Dấu "=" xảy ra khi: x=2 và y=4
Vậy GTNN của B là -14 tại x=2 và y=4
A=(x2+3x)(x2+3x+2)=(x2+3x+1-1)(x2+3x+1+1)=(x2+3x+1)2-1
=> GTNN của A=-1 khi x=\(\frac{-3\pm\sqrt{5}}{2}\)
B= (x2-4x+4)+(y2-8y+16)-14
=(x-2)2+(y-4)2-14
=> GTNN của B=-14 khi x=2 và y=4