GTNN của phân số \(\dfrac{10a+b}{a+b}\) là 10 tại a=1, b=0.
Đặt \(A=\dfrac{10a+b}{a+b}\)
Ta có:
\(A=\dfrac{10a+b}{a+b}=\dfrac{a+b+9a}{a+b}=1+\dfrac{9a}{a+b}=1+\dfrac{9}{1+\dfrac{b}{a}}\)
Để \(A\) nhỏ nhất thì \(1+\dfrac{9}{1+\dfrac{b}{a}}\) nhỏ nhất
\(\Leftrightarrow1+\dfrac{b}{a}\) phải lớn nhất \(\Leftrightarrow\dfrac{b}{a}\) lớn nhất
Mà \(a;b\) là các chữ số \(\Leftrightarrow\left\{{}\begin{matrix}b=9\\a=1\end{matrix}\right.\)
Vậy \(Min_A=\dfrac{10.1+9}{1+9}=\dfrac{19}{10}\) tại \(\left\{{}\begin{matrix}b=9\\a=1\end{matrix}\right.\)