\(\left\{{}\begin{matrix}f\left(x\right)=x+\dfrac{1}{x-1}\\x>1\end{matrix}\right.\)
x>1 => x-1 > 0
\(f\left(x\right)=\left(x-1\right)+\dfrac{1}{\left(x-1\right)}+1\ge2+1=3\)
đẳng thức khi (x-1)=1/(x-1) => x=2
=> GTNNf(x) khi x > 1 là: 3
\(\left\{{}\begin{matrix}f\left(x\right)=x+\dfrac{1}{x-1}\\x>1\end{matrix}\right.\)
x>1 => x-1 > 0
\(f\left(x\right)=\left(x-1\right)+\dfrac{1}{\left(x-1\right)}+1\ge2+1=3\)
đẳng thức khi (x-1)=1/(x-1) => x=2
=> GTNNf(x) khi x > 1 là: 3
Tìm tất cả giá trị thực của tham số m để hàm số \(y=\sqrt{\left(m-2\right)x+2m-3}\) xác định với mọi x ∈ [-1; 4]
f(x)=\(\dfrac{x^2+16}{2x}\)t(x>0) tìm hàm số x đạt giá trị nhỉ nhất thì x nằm trong khoảng bao nhiêu
Cho 3 số thực dương x,y,z thỏa mãn \(x+y+z=3\) Tìm giá trị nhỏ nhất của
\(P=\dfrac{\left(2x+3y+z\right)^3}{3\sqrt[3]{z^2x^2}+1}+\dfrac{\left(2y+3z+x\right)^3}{3\sqrt[3]{x^2y^2}+1}+\dfrac{\left(2z+3x+y\right)^3}{3\sqrt[3]{y^2z^2}+1}\)
Cho S là tập hợp tất cả caccs giá trị nguyên của tham ssos m sao cho bất phương trình \(\dfrac{(m+1)x^2+\left(4m+2\right)x+4m+4}{mx^2+2\left(2m+1\right)x+m}\le1\) có tập nghiệm là R . Tính số phần tử của tập hợp S
Tìm các giá trị x thỏa mãn điều kiện của mỗi bất phương trình sau :
a. \(\dfrac{1}{x}< 1-\dfrac{1}{x+1}\)
b. \(\dfrac{1}{x^2-4}\le\dfrac{2x}{x^2-4x+3}\)
c. \(2\left|x\right|-1+\sqrt[3]{x-1}< \dfrac{2x}{x+1}\)
d. \(2\sqrt{1-x}>3x+\dfrac{1}{x+4}\)
Gọi S là tập hợp các giá trị nguyên của tham số m để bất phương trình \(\dfrac{x^2-2x+4}{x^2-\left(3m+2\right)x+4}>0\) nghiệm đúng với mọi x. Tìm số phần tử của S.
A. 0 B. 5 C. 2 D. 3
( HEPL ME! )
Bài 1: Tìm m sao cho hệ bất phương trình \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x-2\ge0\end{matrix}\right.\)có nghiệm.
Bài 2: Tìm tất cả giá trị thực của tham số m để hệ bất phương trình \(\left\{{}\begin{matrix}x^2+10x+16\le0\\mx\ge3x+1\end{matrix}\right.\)vô nghiệm.
Tìm tất cả các giá trị của m để bất phương trình sau nghiệm đúng với mọi x
\(m.9^x+\left(m-1\right)3^{x+2}+m-1>0\)
giá trị lớn nhất của biểu thức F(x,y) với điều kiện \(\left[{}\begin{matrix}0\le y\le4\\x\ge0\\x-y-1\le0\\x+2y-10\le0\end{matrix}\right.\)là