áp dụng BĐT Cosi,ta có
x+\(\frac{1}{x}\)\(\ge2\sqrt{x.\frac{1}{x}}\)
\(\Rightarrow x+\frac{1}{x}\ge2\)
vậy GTNN x=2
áp dụng BĐT Cosi,ta có
x+\(\frac{1}{x}\)\(\ge2\sqrt{x.\frac{1}{x}}\)
\(\Rightarrow x+\frac{1}{x}\ge2\)
vậy GTNN x=2
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = ( x +3 )( 5 - x ) với -3<= x <=5
tìm giá trị nhỏ nhất của f(x)=|x+\(\dfrac{1}{x}\)|
Tìm giá trị nhỏ nhất m của hàm số \(f\left(x\right)=\dfrac{2x^3+4}{x}\)với x>0
Tìm giá trị nhỏ nhất của hàm số
a, y = f(x) = \(\dfrac{4}{x}+\dfrac{x}{1-x}\) trên (0; 1)
b,, y = f(x) = \(\dfrac{1}{x}+\dfrac{1}{1-x}\) trên (0; 1)
\(f\left(x\right)=\frac{1}{x}+\frac{2}{1-x}\). Tìm giá trị lớn nhất(áp dụng bđt Cauchy
Tìm giá trị nhỏ nhất của biểu thức
a) \(A=\sqrt{x-2}+\sqrt{4-x}\)
b) \(y=\dfrac{4x^4-3x^2+9}{x^2},x\ne0\)
c) \(P=\dfrac{x}{4}+\dfrac{1}{x-1}\) với x>1
1) cho biểu thức f(x)=\(\dfrac{x^2+16}{2x}\) (x>0).Khi hàm số f(x) đạt giá trị nhỏ nhất thì x nằm trong khoảng nào.
gọi (S) là tập hợp các điểm trong mặt phẳng tọa độ có tọa độ thỏa mãn hệ : 2x-y>=2 , x-2y<=2 , x+y>=5 , x>=0 : a) hãy xác định (S) để thấy rằng đó là một miền tam giác ; b) trong (S) , hãy tìm điểm có tọa độ (x,y) làm cho biểu thức f(x,y)=y-x có giá trị nhỏ nhất , biết rằng f(x,y) có giá trị nhỏ nhất tại một trong các đỉnh của (S)
gọi (S) là tập hợp các điểm trong mặt phẳng tọa độ có tọa độ thỏa mãn hệ : 2x-y>=2 , x-2y<=2 , x+y>=5 , x>=0 : a) hãy xác định (S) để thấy rằng đó là một miền tam giác ; b) trong (S) , hãy tìm điểm có tọa độ (x,y) làm cho biểu thức f(x,y)=y-x có giá trị nhỏ nhất , biết rằng f(x,y) có giá trị nhỏ nhất tại một trong các đỉnh của (S)