Ta có: \(\dfrac{\sqrt{x}-1}{\sqrt{x} +3}=\dfrac{\sqrt{x}+3-4}{\sqrt{x}+3}=1-\dfrac{4}{\sqrt{x}+3}\)
\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\)
\(\Rightarrow\dfrac{4}{\sqrt{x}+3}\le\dfrac{4}{3}\Rightarrow-\dfrac{4}{\sqrt{x}+3}\ge-\dfrac{4}{3}\\ \Rightarrow1-\dfrac{4}{\sqrt{x}+3}\ge1-\dfrac{4}{3}=-\dfrac{1}{3}\)
Vậy giá trị nhỏ nhất của biểu thức trên là \(-\dfrac{1}{3}\). Dấu bằng xảy ra khi và chỉ khi \(x=0\).