Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến :
\(A=x.\left(5x-3\right)-x^2.\left(x-1\right)+x.\left(x^2-6x\right)-10+3x+x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(B=3.\left(2x-1\right)-5.\left(x-3\right)+6.\left(3x-4\right)-19x+x.\left(3x+12\right)-\left(7x-20\right)+x^2.\left(2x-3\right)-x.\left(2x^2+5\right)\)
Tìm giá trị lớn nhất của biểu thức: \(A=\left|x-3\right|.\left(2-\left|x-3\right|\right)\)
chứng tỏ rằng giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến
a)\(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)
b)\(4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)=3x^2\left(1-x\right)\)
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Bài 2: Tìm GTNN của các biểu thức sau:
a, \(A=x^2-3x+5\)
b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
1giải các PT sau
a, 2\(\left|1-2x\right|-4x+3=\left|x+2\right|\)
b,\(\left|3x-6\right|+\left|x+1\right|=x\)
2. rút gọn rồi tính giá trị biểu thức tại x=-3,y=5
A=\(\left|3x-1\right|-4\left(x+2\right)=5\)
Tìm giá trị lớn nhất của biểu thức:
\(A=\left(3x-x^2\right)\left(x^2+5x+4\right)\)
Tìm giá trị nhỏ nhất của các biểu thức sau
a) A=\(x^2+3x+7\) ( bạn nào giải thích hộ mình cách làm câu a với ạ)
b) B=\(2x^2-x+5\)
c) C=\(12x+3x^2-\frac{1}{2}\)
d) D=\(\left(x-2\right).\left(x-5\right).\left(x^2-7x-10\right)\)