\(E=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
Để E đạt \(GTNN\) thì tích E phải có lẻ thừa số âm .
\(\left(x-1\right)< \left(x+2\right)< \left(x+3\right)< \left(x+6\right)\)
\(\Rightarrow\begin{cases}x-1< 0\\x+2>0\end{cases}\)
\(\Rightarrow\begin{cases}x< 1\\x>-2\end{cases}\)
\(\Leftrightarrow-2< x< 1\)
Hoặc :
\(\begin{cases}x+3< 0\\x+6>0\end{cases}\)
\(\Rightarrow\begin{cases}x< -3\\x>-6\end{cases}\)
\(\Rightarrow-3< x< -6\).