Bài 1: Mở đầu về phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tran Thi Loan

Tìm giá trị nhỏ nhất của biểu thức P = x2+2y2 +2xy-6x-8y+2027

Trần Quốc Lộc
11 tháng 5 2018 lúc 17:47

\(P=x^2+2y^2+2xy-6x-8y+2027\\ =\left(x^2+y^2+9+2xy-6x-6x\right)+\left(y^2-2y+1\right)+2017\\ =\left(x+y-3\right)^2+\left(y-1\right)^2+2017\)

Do \(\left(x+y-3\right)^2\ge0\forall x;y\)

\(\left(y-1\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x+y-3\right)^2+\left(y-1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+y-3\right)^2+\left(y-1\right)^2+2017\ge2017\forall x;y\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x+y-3\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(P_{\left(Min\right)}=2017\) khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

hattori heiji
12 tháng 2 2018 lúc 12:15

P = x2+2y2 +2xy-6x-8y+2027

=x2+2xy+y2+y2-6x-6y-2y+1+9+2017

=(x2+2xy+y2)-(6x+6y)+9+(y2-2y+1)+2017

=(x+y)2-6(x+y)+9+(y-1)2+2017

=[(x+y)2-6(x+y)+9]+(y-1)2 +2017

=(x+y-3)2+(y-1)2+2017

Do (x+y-3)2 \(\ge0\forall x\)

(y-1)2 \(\ge0\forall x\)

=>\(\left(x+y-3\right)^2+\left(y-1\right)^2\ge0\)

=>\(\left(x+y-3\right)^2+\left(y-1\right)^2+2017\ge2017\)=> P\(\ge2017\)

Min P=2017 khi

y-1=0

=> y=1

x+y-3=0

=>x+1-3=0

=> x=2

Vậy GTNN của P=2017 khi y=1 và x=2


Các câu hỏi tương tự
Trần Thị Thu Ngân
Xem chi tiết
Nguyễn Thị Hà Uyên
Xem chi tiết
Tran Thi Loan
Xem chi tiết
Zye Đặng
Xem chi tiết
Nguyễn Ly
Xem chi tiết
Cận
Xem chi tiết
Hàn Bảo Nhi
Xem chi tiết
Linh Lê
Xem chi tiết
Ừm Tôi Phiền
Xem chi tiết