\(M=\frac{7x^2+14x-7}{14x^2+28x+63}=\frac{-4x^2-8x-18+11x^2+22x+11}{7\left(2x^2+4x+9\right)}=\frac{-2\left(2x^2+4x+9\right)}{7\left(2x^2+4x+9\right)}+\frac{11\left(x+1\right)^2}{7\left(2x^2+4x+9\right)}\)
\(M=-\frac{2}{7}+\frac{11\left(x+1\right)^2}{7\left[2\left(x+1\right)^2+7\right]}\ge-\frac{2}{7}\)
\(M_{min}=-\frac{2}{7}\) khi \(x=-1\)